

ADHESION PROMOTING OLIGOMERS FOR INDIRECT FOOD PACKAGING

2018 Radtech

Anna Johnson, Jeff Klang and Steve Tyson

AGENDA

- Flexible food packaging market
- ** Challenges in flexible food packaging
 - Barrier properties
 - Migration
 - Adhesion
- Global regulatory challenges
 - Sartomer strategy for in-direct food packaging (LM)
- ** Adhesion Fundamentals
- Adhesion promoting oligomers for in-direct food packaging
- **Conclusions**

FLEXIBLE FOOD PACKAGING

- Driven by consumer and manufacturing demand for smaller, more lightweight packaging
 - Saves on product transportation
- Shelf life, functional barriers and package re-sealability have greatly improved
- Trend is transitioning from rigid containers to flexible packaging
 - Combination of market cannibalization and new flexible packaging

MARKET FOR FLEXIBLE PACKAGING

- US flexible food packaging 71% of total flex demand in 2016 1
- Expected to rise to \$15.5 billion in 2021.
 - 65% of food packaging demand:
 Meat/poultry/seafood, baked goods,
 snack food, produce, candy/confections, and pet food¹
- Global packaging (conventional/UV) estimated to be \$950 billion².
 - Asia ~36% of the market, North America and Western Europe
 ~ 23% and 22%, respectively
 - Considerable growth is in the flexible packaging segment
- Translates into \$8 billion of the \$20 billion global ink (conventional/UV) market
 - Flexo, gravure, sheetfed inks, digital printing steadily growing³

L. Market study, "Converted Flexible Packaging Market in the US, 14th Edition," by The Freedonia Group

^{2.} SmithersPira ("The Future of Global Packaging to 2018") https://www.inkworldmagazine.com/issues/2015-05-01/view_features/packaging-inks-market

https://www.inkworldmagazine.com/issues/2017-05-01/view_features/the-packaging-ink-market-continues-to-thrive

CHALLENGES IN FLEXIBLE FOOD PACKAGING

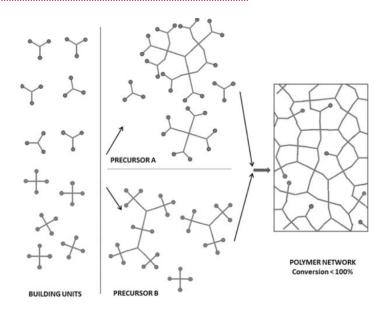
- → Related to polyolefin and polyester used for the pouch or container body
 - Moisture and oxygen diffusion
 - Mitigated by lamination of several polymer substrates or metal foils.
- → Migration potential of printing inks
 - Exclude low molecular weight components
 - Ensuring the highest degree of cure
 - Lamination of functional barriers
 - Low migration criteria will be explored later
- → Adhesion of printing inks remains one consistent challenge
 - Mainly attributed to the low surface energy of the polymer base
 - Poor solubility of polyolefins in monomer, no interpenetrating network formed

ADHESION CHALLENGES IN FLEXIBLE FOOD PACKAGING

GENERAL				
FILM	ABBREVIATION	Surface Energy (mJ/cm2) ⁴		
MATERIALS		,		
Polypropylene	PP	30		
Cast Polypropylene	CPP	30		
Low Density Polyethylene, Linear Low Density Polyethylene	LDPE, LLDPE	31		
Oriented Polypropylene	OPP,BOPP,MET- BOPP	31		
Polyethylene	PE	34		
High Density Polyethylene	HDPE	35		
Polyethylene terephthalate, Metalized PET	PET, METPET	44		
Polyamides	PAM	44		

Diversity in polymer attributes

- Flexibility/Rigidity
- Moisture and oxygen barriers
- High/Low temperature resistance
- Surface energy increases, adhesion properties generally improve
- Table illustrates abundance of low surface energies
- Corona/plasma treatment improve adhesion
 - Not always enough/ available


GLOBAL REGULATORY CHALLENGE

- U.S. Federal Food Drug and Cosmetic Act (FFDCA) requires that packaging will not adulterate any human /pet food
- FDA requires that chemicals that migrate into food are considered indirect food additives
 - Subject to FDA Food contact substance (FCS) in parts 174-186 of Title 21
 - Levels must be below threshold of regulation (TOR)
 - Food contact notification (FCN) process
- Compliance with EU for indirect food packaging
 - 2005 Swiss Ordinance, SMLs (Migration Limits)
 - 2016 Nestle guidance note, Exclusion/Minimize Lists

SARTOMER'S LOW MIGRATION STRATEGY

- Low potential for migration >400g/mol
 - Higher purity monomer diluents
- **∺** High functionality monomers (≥3)
 - Optimizes crosslink density
 - Can work against adhesion
- ** Reduce cross contamination and NIAS* through production sequencing

- Printer is responsible to prove packaging migration specifications
 - Migration limits (SMLs) dictated by Swiss Ordinance
 - Extensive migration testing, based on Swiss protocols
 - Worst case scenario calculations

ADHESION FUNDAMENTALS

Important relationship between stress and adhesion⁵

** Stress intrinsic to coating

- S^F = crosslink density, shrinkage due to Δ free volume
- S^T = Thermal expansion and Tg
 difference between coating/substrate
- S^H = Hygroscopic expansion

$$S = \frac{E\epsilon}{1 - \nu} \tag{1}$$

$$S^{F} = \frac{E}{1 - \nu} \cdot \frac{\Delta V}{3V} \tag{2}$$

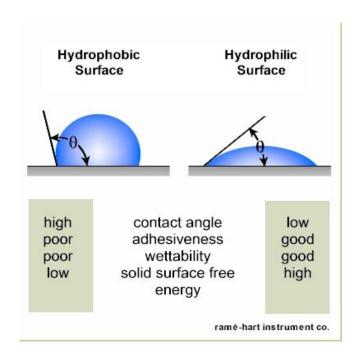
$$S^{T} = \int_{T_{1}}^{T_{2}} \frac{E}{1 - \nu} (\alpha_{F}^{T} - \alpha_{S}^{T}) dT \cong \frac{E}{1 - \nu} (\alpha_{F}^{T} - \alpha_{S}^{T}) (T_{g} - T)$$
 (3)

$$S^{H} = \int_{RH_{1}}^{RH_{2}} \frac{E}{1 - \nu} (\alpha_{F}^{H} - \alpha_{S}^{H}) dRH$$
 (4)

The total sum of stresses can indicate impact on adhesion

Positive number indicates tendency to shrink

$$S_{\text{tot}} = S^{\text{F}} \pm S^{\text{H}} \pm S^{\text{T}}$$


Negative number indicates coating expansion

ADHESION FUNDAMENTALS

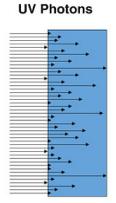
- Surface energy, free energy per unit surface area
 - Energy to determine substrate wetting
 - Lower energy for hydrophobic surfaces
- Surface Tension, force that "hold a fluid together
 - Determines if ink will wet and spread/ retract from solid surface
 - Lower energy for hydrophobic liquids
 - HDDA ~ 36 dynes
 - Alkoxylated HDDA ~39 dynes

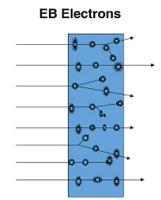
Lower Contact Angle = Better Adhesion

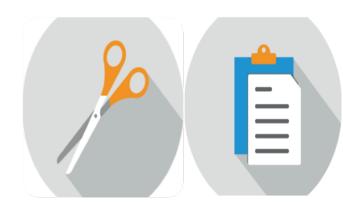
ADHESION FUNDAMENTALS

Substrate Surface Energy > Ink surface Tension

- Typical ink surface tension 30-40 dynes
- The larger the difference in Surface Energy (γ_S) and Surface Tension (γ_L) better the adhesion
- Even with corona treatment, adhesion can be difficult!


Typical Treat Levels & Watt Densities ⁶				
	Incoming Level	Desired Level	Watt Density	
Treated BOPP	34 – 36	40 – 42	2.5 – 3.5	
Treated BOPET	40 – 42	54 – 56	0.9 – 1.5	
Treated LDPE, high slip	34 – 36	40 – 42	2.5 – 3.5	
Cast PP, no slip	38 – 40	40 – 42	1.5 – 2.5	
Untreated LDPE, low slip	30 – 31	no data	no data	


Note: Variations in resin blend, additives or process will affect values.



ADHESION FUNDAMENTALS: EBEAM

- e much higher energy then photons
- The electrons cut molecules, forming radicals
 - chain-scission, mechanism behind sterilization, polymer degrading
 - ebeam reduces molecular weight by chopping long chains into shorter chains
- Electron beam-induced reactive compounding (grafting)
 - Electron grafting, cut and paste
 - Enhances adhesion of inks and coatings to various substrate

NEW ACRYLIC OLIGOMER

Physical Properties

Appearance: Clear Liquid

Color, APHA: 23

Refractive Index: 1.483

• Tg °C (by DMA): 46

Viscosity, cP @ 60 °C: 5000

Product Attributes

- High MW/Low Shrinkage
- Nestle/Swiss Compliant
- 550 fpm cure speed, D bulb
- Balance Hydrophilic/Hydrophobic

Applications

- Lithographic Inks
- Flexographic Inks

	PE	PP	PC	PET	PETG
New Acrylic Oligomer	0	25	100	75	100
Corona Treatment	100	100	100	100	100

Adhesion Tape Test: Adhesion and cure evaluation at 50/50 (3EO)TMPTA/Acrylic Oligomer dilution, PI 50/50 TPO/BAPO, LED 395 @50fpm

NEW POLYESTER ACRYLATE OLIGOMER

Physical Properties

Appearance: Clear Liquid

Color, APHA: 34.5

Tg °C (by DMA): 57

Viscosity, cP @ 60 °C: 2400

Product Attributes

- Low Shrinkage due to high molecular weight
- Nestle/Swiss Compliant
- 550 fpm cure speed, D bulb
- Hydrophobic characteristics

* Applications

- Lithographic Inks
- Flexographic Inks

	PE	PP	PC	PET	PETG
New PEA Oligomer	50	100	100	100	50
Corona Treatment	100	100	100	100	100

Adhesion Tape Test: Adhesion and cure evaluation at 50/50 (3EO)TMPTA/PEA Oligomer dilution, PI 50/50 TPO/BAPO, LED 395 @50fpm

CONCLUSIONS

- Considerable growth in the flexible fooe d packaging segment
 - Translates to growth in the global ink market
- ** Strategies for overcoming challenges in flexible food packaging
 - Functional barriers for moisture & oxygen diffusion and ink migrate-ables
 - Minimize low MW components
 - Highest degree of cure
- ** Strategies on optimizing adhesion to polyolefin/polyester flexible films
 - Reduce shrinkage and thermal strain
 - Align Tg of coating with substrate
 - Ensure Surface Energy > Surface Tension, corona treatment beneficial
- New acrylic and polyester acrylate oligomers developed to meet all these challenges

THANK YOU FOR YOUR ATTENTION QUESTIONS?

